Survival Analysis

Part of:
“I like distance learning because of the interaction with a diverse, international student group of…”
Esther de Groot, Amsterdam - The Netherlands
“E-learning, as provided by Elevate, is a good opportunity to do part of the MIH on a distance.”
Tabitha Kievit, student, Tokyo - Japan

Survival data, or more generally, time-to-event data (where the “event” can be death,  disease, recovery, relapse or another outcome), is frequently encountered in epidemiologic studies. Censoring is a problem characteristic to most survival data, and requires special data analytic techniques.

This online medical course will give an introduction to survival analysis and cover many of the types of survival data and analysis techniques regularly encountered in epidemiologic research. The necessary statistical theory will be presented, but the course will focus on practical examples, with an emphasis on matching data analysis to the research question at hand. Lab sessions will give students the opportunity to apply the theory to real datasets using the free statistical software R.

Learning Objectives

By the end of the course, you should be able to:

  • recognize or describe the type of problem addressed by a survival analysis
  • define and recognize censored data
  • define and interpret a survivor function and a hazard function, and describe their relation
  • recognize the computer printout from a Cox proportional hazards model, a stratified Cox model, and a Cox model extended for time-dependent covariates
  • state the meaning of the proportional hazards assumption and know how to check this assumption
  • recognize which survival analysis technique is appropriate for a given research question and dataset
  • interpret the computer printout for survival models, including hazard ratios, hypothesis testing, and confidence intervals

Course topics

  • Introduction to Survival Data and Analysis
    Students are introduced to the characteristics of survival data, censoring (left, right, interval) & truncation. The Kaplan-Meier curves and log-rank test are introduced, followed by the Cox proportional hazards model.
  • Checking the Cox Model
    Parametric Models Methods for checking the assumptions of the Cox model are introduced. Students get to know stratified Cox models. In addition to the semi-parametric Cox PH model, students are introduced to fully parametric models for survival data.
  • Advanced Cox regression, more on censoring and truncation
    Students get more into-depth information on analyzing data with censoring and truncation. The importance of taking time-dependent covariates into account by incorporating them as time-dependent variables in the model is explained.
  • Competing risks and informative censoring
    Methods for handling competing risks and informative censoring are addressed

Learning Methods

The whole course will take place online. The following learning methods will be used:

  • Web lectures
  • Online discussion forums
  • Individual and group assignments

Assessment

To successfully complete this course, you need to actively participate in the discussion forums and complete the learning unit assignments, including:

  • Individual and group assignments
  • A final assignment: this involves the completion of a daily quiz. The course is closed by the presentation of a case study by the student. The submission deadline and the resit deadline will be announced when they become available. You are allowed to redo the final assignment once.

Accreditation

As this is a university course, it is covered by academic accreditation. Upon successful completion of this course, you will receive a recognized certificate from Utrecht University.

Entry Requirements

To enroll in this course, you need:

  • A BSc degree
  • At least one course in basic statistical methods, up to and including simple and multiple linear regression, such as: Classical Methods in Data Analysis, Introduction to Biostatistics for Researchers, or their equivalent.
  • Note: R will be used during lectures and computer labs. Most techniques require the use of R (or another package, such as Stata or SAS). Those unfamiliar with the (free) statistical package R are strongly encouraged to practice with it before beginning the course.

Please note
As this is an online course, you do need access to an internet connection in order to be able to follow lectures, complete assignments and communicate with fellow participants.

Course staff

Supervisor
Lecturer
Lecturer

Enrollment

Pick a date for this course:
(Enrollment deadline: 5 November 2018 - 23:59 CET)
43 days left.

Quick overview

  • 19 Nov 2018 – 23 Dec 2018
  • 5 weeks
  • 9 hrs/wk
  • Academic Certificate
  • 1.5 EC
  • Online
  • English
  • Web lectures, exercises, group discussions
  • Desktop, Laptop, Tablet
  • 785

Request more info